Estimating the effective reproduction number of COVID-19 in North Carolina

by Marie Stoner, Alexander Preiss, Kasey Endres-Dighe, Kasey Jones, Emily Hadley, Sarah Reza

April 22, 2021

Throughout the COVID-19 pandemic, stakeholders have used the effective reproduction number (Rt) to monitor and inform efforts to mitigate the pandemic. Rt can be defined as the estimated number of people each person with SARS-CoV-2 will infect at time t, considering the control measures in place and the proportion of the population with immunity [1]. Rt has been calculated by numerous groups using a variety of private and publicly available data sources and has been used by policy makers to monitor the trajectory of the pandemic [2].

RTI International worked with public health and healthcare stakeholders in North Carolina in 2020 to produce weekly estimates of Rt statewide and by county and sub-state region. In this publication, we focus on statewide Rt, estimates [3]. Our approach to modeling evolved over time to account for range sources of uncertainty and delay. From September 3 to 10, 2020 we used a simple formula based on the growth rate of confirmed cases, derived from Wedgpa and Liaprial 2002[4]. From September 17 to November 11, 2020 we used the R package Epidimi [5], which produces interval estimates in addition to point estimates to account for uncertainty. From November 19 to December 17, 2020, we used the R package EpiNow [6], which ed additional corrections for delays due to the incubation period and reporting delay in reported case counts. R estimates were based on confirmed cases by day of report.

We compared our weekly Rt estimates from September 3 to December 17, 2020 to public confirmed case data from the North Carolina Department of Health and Human Services (NC DHHS) and publicly available Rt estimates from five other modeling groups: Instagram [4]; UCLA Covid19 [9], Covid Act Now [10], and Harvard [13] (figure 1). The models use slightly different methods and adjustments, as well as using data from various sources. The spread of Rt estimates was quantified over time by calculating the standard deviation of the five estimates each week (Figure 2). Estimates were widely distributed between September and mid-NIober, closer together in mid-October to mid-November, and then widely distributed again in mid-November to December when there was a sharp increase in cases in North Carolina. Our Rt estimates were more similar to estimates from other models during October to mid-November when cases maintained a steady trend. Rt estimates based on reported case counts are affected by potential bias in the underlying data. Reported case counts are imperfect estimates of true incidence. The magnitude of under-reporting is unknown and likely varies over time, as testing availability and behavior evolve. COVID-19 tests also vary in their sensitivity and specificity. Unfortunately, no easy solution exists for this problem. Sentinel surveillance [12] and mass testing [13] programs can provide better disease monitoring, but these programs are difficult to implement, bring their own set of challenges. Reported case counts can also be adjusted to reduce bias; the Instagram team [4] used a simple adjustment by testing volume, and Botelho et al. [14] propose a more rigorous correction methodology. Ultimately, the most important response to this limitation is to ensure that all stakeholders making decisions based on Rt estimates are aware of its inclusions. R, can be a useful metric, but it is sensitive to differences between models and underlying data. In North Carolina, this was particularly evident during September to October, as well as after mid-November when the trends changed dramatically. In light of these findings, Rt estimates should be presented in a way that emphasizes the uncertainty inherent in these estimates. For example, by showing a range of potential values (an interval estimate), by showing comparisons with estimates from a range of models, or by showing an ensemble estimate that combines estimates from multiple models.

The findings and conclusions in this publication are those of the author(s) and do not necessarily represent the views of the North Carolina Department of Health and Human Services, Division of Public Health.

Figure 1 legend: Figure 1, Rt estimates from RTI and 5 other groups in relation to reported COVID-19 confirmed cases by day of report from North Carolina from September 3 to December 17, 2020.

Figure 2 legend: Standard deviation of Rt estimates from RTI and 5 other groups in relation to confirmed new cases from North Carolina from September 3 to December 17, 2020.

References:
[12] https://doi.org/10.1093/ijmpa/v14i1.872
Figure 2: Standard deviation of Rt estimates